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Zika virus (ZIKV) is a member of the Flaviviridea family comprising ca. 70 viruses 

sharing common structural features, and takes its name from the Zika Forest in Uganda 

where it was first isolated (Dick, 1953; Dick et al., 1952). It is the causative agent of an 

emerging infection arising from bites of the Aedes aegypti species for which, as yet, the full 

implications for human health remain unclear. Widespread infection and serious birth 

defects, including neurological diseases and microcephaly in Brazil have been reported 

(Rasmussen et al., 2016). In adults, ZIKV infection has been epidemiologically linked to 

increased prevalence of Guillain-Barré Syndrome (Cao-Lormeau et al., 2016; Parra et al., 

2016). Thus, both in utero and adult, ZIKV-associated pathological conditions suggest that 

the virus could infect nerves (Bell et al., 1971) and neural cells (Garcez et al., 2016). 

Additional modes of transmission to mosquito bites have also emerged, including sexual 

transmission (D'Ortenzio et al., 2016; Foy et al., 2011; Musso et al., 2015) and blood 

transfusion (Motta et al., 2016). These could further expand the epidemic impact of ZIKV 

infection, increasing the need for an effective vaccine, and antiviral agents with which to 

treat infected individuals. 

Conventional antiviral drug-discovery pipelines involve complex, expensive, and time-

consuming processes, militating against their rapid and widespread deployment, particularly 

in developing countries. One attractive alternative for combating emerging and rapidly 

spreading infectious diseases is drug repurposing (Cheng et al., 2016), the application of an 

existing licensed pharmaceutical agent for another medical need. This has already been 

proposed for the treatment of both hepatitis C (He et al., 2015) and Ebola virus (Sakurai et 

al., 2015) infections. Heparin, the widely used anticoagulant, has potentially attractive 

features including activity against attachment and entry of the enveloped viruses, human 

simplex (HSV) (Herold et al., 1996; Nahmias and Kibrick, 1964), human immunodeficiency 

(HIV) (Baba et al., 1988), SARS coronavirus (Vicenzi et al., 2004), and influenza (H5N1) 

(Skidmore et al., 2015). Here, we explore the effects of heparin on ZIKV infection in human 

neural progenitor cells (hNPCs) with particular regard to virus replication and induction of 
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cytopathic effects resulting in cell death. 

Cells:- Human neural progenitor cells (hNPCs) were obtained by the reprogramming 

of human adult skin fibroblasts (Movement Disorders Bio-Bank, Carlo Besta Institute, Milan, 

Italy) and were reprogrammed (CytoTune-iPS 2.0 Sendai Kit, Life Technologies) to obtain 

human induced pluripotent stem cells (hiPSCs), then maintained in feeder-free conditions 

(mTeSR1 culture medium, Stem Cell Technologies), as reported (Orellana et al., 2016). For 

embryoid bodies (EBs), dissociated hiPSCs were seeded into low-adhesion plates in 

mTeSR1 medium supplemented with N2 (1:200), ThermoFisher Scientific), human Noggin 

(0.5 µg/ml, R&D System), SB431542 (5 µM, Sigma), Y27632 (10 µM, Miltenyi Biotec) and 

penicillin-streptomycin (100 µg/ml, Sigma). For rosettes, EBs were plated after 10 days onto 

matrigel-coated plates (1:100, matrigel growth factor reduced, Corning) in DMEM/F12 

(Sigma) with N2 (0.5%), non-essential amino acids (1%, ThermoFisher Scientific) and 

penicillin-streptomycin. After 10 days, cells were passaged with Accutase (Sigma) and 

seeded onto matrigel coated-flasks in media containing DMEM/F12, N2 (0.5%), B27 (0.5%), 

ThermoFisher Scientific), penicillin-streptomycin (1%) and basic fibroblast growth factor 

(FGF)2 (20 ng/ml, ThermoFisher Scientific). 

Viruses:- The viruses employed were the historical ZIKV strain (MR766), (EVAg -

European Virus Archive), or recent Brazilian strain (INMI-1; GenBank Accession # 

KU991811), isolated from an Italian citizen who had travelled in Brazil in January 2016. Both 

viral strains were expanded in Vero cells and titered in a Plaque Forming Assay (PFA) 

(Hamel et al., 2015). 

Infection:- Cells were seeded at 3 x 104 / ml in 48 well plates. After 3 days of culture, 

heparin (Celsus, Cincinnati) was added 1 h prior to infection at 100 µg/ml and then virus-

containing supernatant was added, providing multiplicity of infection (moi) of 1. The 

efficiency of infection was evaluated by immunofluorescence staining with either an anti-

flavivirus envelope monoclonal antibody (mAb) (Millipore, mAb 10216) or a double-stranded 

RNA (1:300, English and Scientific Consulting Kft, Hungary) 3 and 7 days post-infection. To 
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evaluate apoptosis, an Ab against cleaved-caspase-3 (1:200, Cell Signaling, 9661) was 

used. Cells were then washed with PBS and incubated for 1 h with Hoechst and either anti-

mouse Alexa Fluor-488 or anti-rabbit Alexa Fluor-594 secondary Abs (1:1,000 in blocking 

solution, ThermoFisher Scientific). Viral supernatants were collected and viral titers were 

determined in the PFA. Cell death was detected in 10 µl samples of culture supernatant 

transferred into half-black 96 microwell plates (Costar). To each well, 50 µl of adenylate 

kinase detection reagent (ToxiLight® BioAssay, Lonza) was added and the plate incubated 

(10 min, room temperature). Luminescence was measured in a Mithras LB940 Microplate 

Reader (Berthold Technologies). 

Immunofluorescence staining with Nestin (a neuroectodermal stem cell marker) and 

SOX2 (a transcription factor maintaining pluripotency or self-renewal) confirmed the nature 

of the hNPCs employed (Figure 1A, upper panels). hNPCs were incubated with heparin 

(100 µg/ml, 1 h prior to infection (see Supplementary Table 1 for details of heparin 

characterization and 1H and 13C NMR spectra in Supplementary Figures 2 and 3) with 

historical ZIKV strain MR766 and recent Brazilian strain, INMI-1. The proportion of MR766 

infected hNPCs was ca. 60% (Figures 1A, middle panels). Modest decreases (not 

statistically significant) in infected cell numbers were observed in cultures pretreated with 

heparin. Progeny infectious virion production was measured in culture supernatants using 

standard PFA on Vero cells, indicating that heparin reduced the production of progeny virus 

by 2-3 fold (Figure 1A, lower panels). 

We next evaluated the effect of heparin on hNPCs infection by the INMI-1 strain, which 

is characterized by lower virus replication efficiency (35%) than MR766. Nonetheless, the 

antiviral effect of heparin was modest and, as for MR766, not statistically different from 

untreated cultures, as determined by quantification of infection efficiency and viral titers 

released into the culture supernatant in the PFA on Vero cells (Figure 1B, lower panels). 

Then, we analyzed the virus-induced cytopathic effects by measuring the levels of 

adenylate kinase released into the culture supernatant after damage of the cell membrane 
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(Crouch et al., 1993; Olsson et al., 1983). Heparin did not exert toxic effects on uninfected 

cells (Figure 2). Unexpectedly and strikingly, however, heparin fully prevented the virus-

induced cytopathic effects of cultures infected with either the MR766 or INMI-1 ZIKV strains 

(Figure 2A and B, respectively). Thus, heparin partially uncoupled the virus replication (that 

was only modestly inhibited) from the virus-induced death of hNPCs. 

ZIKV infection of cranial neural crest cells has been linked to the release of vascular 

endothelial growth factor (VEGF) and leukaemia inhibitory factor (LIF) exerting proapoptotic 

effects on adjacent cells (Bayless et al., 2016). Thus, we determined the proportion of cells 

that were positive for caspase-3 staining, as an indicator of apoptotic cell death (Lavrik, 

2005). The proportion of caspase-3+ cells in uninfected and untreated cell cultures increased 

from 9.5 ± 3.4% at day 3 after infection (day 6 after the initial seeding) to 29 ± 1.1% 7 days 

after infection. At the same time points, heparin decreased the proportion of caspase-3+ cells 

to 5.9 ± 2.7% and 12.1 ± 3.7%, respectively. In infected cultures, the proportion of caspase-

3+ cells increased to 31.1 ± 5.5% 7 days post-infection with the INMI-1 strain, and decreased 

to 16.2 ± 0.3% with heparin (data not shown). These results suggest that the activation of 

the master executor of apoptosis, i.e. caspase-3, is activated in hNPC cultures 

independently of virus infection and that heparin probably prevents its activation by 

stabilizing FGF2 for the duration of the culture, as reported (Caldwell et al., 2004). In 

contrast, heparin fully prevented virus-induced necrotic death of cells, as measured by the 

release of adenylate kinase in the culture supernatant (Figure 2), although the mechanism 

of action remains unknown. As the culture condition induced the apoptosis of uninfected 

hNPCs, we tested whether heparin affected ZIKV cytopathic effects, and in particular, 

prevented caspase-3 activation in Vero cells that are highly permissive to ZIKV replication. 

The background level of apoptosis in the absence of viral infection was negligible 

(Supplementary Figure 1). Indeed, heparin treatment did not alter the levels of viral 

replication as compared with control cells in Vero cells, however, it significantly decreased 

the percentage of caspase-3+ cells suggesting that heparin can also prevent ZIKV-induced 

apoptosis. 
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In terms of drug repurposing, in addition to caspase-3 inhibitors (Cheng et al., 2016; 

He et al., 2015), heparin represents both a clinically-approved pharmacological agent 

capable of preventing ZIKV-induced necrosis of neural cells, as observed with hNPCs, and a 

lead compound to help discover novel agents preventing virus replication and cytopathic 

effects. 

Independently of the obvious heparin anticoagulant effect, there is now considerable 

evidence that heparin possesses anti-inflammatory, anti-apoptotic and proliferative activities 

that rely on a variety of mechanisms (Katsi et al., 2016). However, the polyanionic nature of 

heparin favours the neutralization of cationic mediators of inflammation and apoptosis but, 

also viral envelopes (Rusnati et al., 2009). The mechanism through which heparin 

derivatives inhibit infectivity in other viral infections, such as herpes simplex virus (Shukla 

and Spear, 2001), is most likely by competing with host cell surface glycoproteins or 

proteoglycans, or in other cases, through binding of low specificity to several proteins by 

virtue of their polyanionic nature (Skidmore et al., 2015). In the present case, however, the 

effect of heparin on infectivity is less striking than its ability to protect infected cells from cell 

death. The most likely mechanism to explain this phenomenon is that heparin is binding 

several proteins that promote inflammation and cell death. Heparin has been documented to 

bind and, in many cases neutralise, a range of relevant growth factors and enzymes, 

including tissue necrosis factor-α (TNF-α) (Salas et al., 2000; Spratte et al., 2013; Veraldi et 

al., 2015). 

In conclusion, heparin is used safely during pregnancy and could serve as a potential 

adjunct therapy in the presence or likelihood of ZIKV infection. While ultra-low molecular 

weight heparin has been reported to cross the blood brain barrier (FDA guidelines, accessed 

05/10/2016), heparin does not cross the placenta 

http://www.fda.gov/Safety/MedWatch/SafetyInformation/ucm219000.htm. Improved delivery 

systems may facilitate the administration of heparin and heparin derivatives. 

http://www.fda.gov/Safety/MedWatch/SafetyInformation/ucm219000.htm
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Figure 1. Heparin does not inhibit ZIKV infection of hNPCs 

A. Infection of hNPCs with the MR766 strain with (middle two panels) and without 

(upper two panels) heparin treatment (100 µg/ml). To determine that the cells were bona fide 

hNPCs, cells were stained with Sox2 (red), Nestin (green) and Hoechst (blue). Uninfected 

and infected cells were fixed after 3 days with paraformaldehyde solution and stained with a 

mAb specific for Flavivirus E protein (green). After PBS washes, cells were washed again, 

mounted and examined by microscopy. Quantification of infection efficiency and viral titers 

released into the culture supernatant are reported in the two lower panels (left and right, 

respectively). Scale bar of upper left panel: 20 µm, scale bar of remaining panels: 5 µm. Bar 

graphs indicate the mean ± SEM of 4 independent experiments. P values were calculated by 

Student’s paired t-test. 

B. Infection of hNPCs by the INMI-1 strain, with (middle two panels) or without (upper 

panel) heparin treatment (100 µg/ml). Uninfected and infected cells were fixed after 7 days 

with paraformaldehyde solution and stained with a mAb specific for Flavivirus E protein 

(green). Quantification of infection efficiency and viral titers released into the culture 

supernatant are reported in the lower two panels (left and right, respectively). Scale bar: 5 

µm. Bar graphs indicate the mean ± SEM of 2 fields including more than 1,000 cells in 3 

independent experiments. P values were calculated by Student’s paired t-test. 

Figure 2. Heparin prevents virus-induced CPE 

A. Supernatant of infected hNPCs with the MR766 strain was collected 3 days post infection. 

The results are expressed as relative luminescent unit (RLU). Data are expressed as mean 

± SEM of 3 independent experiments. Repeated measures Anova was used with the 
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Bonferroni correction. *Represents statistical comparison among groups (**, p<0.01; *, 

p<0.05). B. Supernatant of infected hNPCs with the INMI-1 strain was collected 7 days post 

infection. The cell death was analyzed as reported in A. Results are expressed as relative 

luminescent unit (RLU). Data represent the mean ± SEM of 3 independent experiments. 

Repeated Measures ANOVA was used with the Bonferroni correction. *Represents 

statistical comparison among groups (**, p<0.01; *, p<0.05). 
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Highlights 

·Recent outbreak of Zika virus in Brazil included widespread neurological effects 

·One approach to tackling emerging infection is to re-purpose existing pharmaceuticals 

·The anticoagulant, heparin, inhibits infection weakly, but completely prevents cell death 




